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ABSTRACT 

A large class of computations are characterized by a sequence of phases, with phase changes 
occurring unpredictably. We consider the decision problem regarding the remapping of workload to 
processors in a parallel computation when (i) Ihe uiility of remapping md the future behavior of the 
workload is uncertain, and (ii) phases exhibit stable execution requirements during a given phase, but 
requirements may change radically between phases. For these problems a workload assignment gen- 
erated for one phase may hinder performance during the next phase. This problem is treated formally 
for a probabilistic model of computation with at most two phases. We address the fundamental prob- 
lem of balancing the expected remapping performance gain against the delay cost. 

Stochastic dynamic programming is used to show that the remapping decision policy minimizing 
the expected running time of the computation has an extremely simple structure: the optimal decision at 
any decision step is followed by comparing the probability of remapping gain against a threshold. 
However, threshold calculation requires a priori estimation of the performance gain achieved by remap 
ping. Because this gain may not be predictable, we examine the performance of a heuristic policy that 
does not require estimation of the gain. In most cases we find nearly optimal performance if remapping 
is chosen simply when the probability of improving performance by remapping is high. The 
heuristic’s feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiproces- 
sor. Our results suggest that except in extreme cases, the remapping decision problem is essentially 
that of dynamically determining whether gain can be achieved by remapping after a phase change; pre- 
cise quantification of the decision model parameters is not necessary. Our results also suggest that this 
heuristic is applicable to computations with mofe than two phases. 

This research was supported in part by the National Aeronautics and Space Administration under NASA Con- 
tract NAS1-18107 while the first author was in residence at ICASE, Mail Stop 132C. NASA Langley Research 
Center, Hampton, VA 23665. It was also supported in part by the Virginia Center for Innovative Technology 
while both authors were in residence at the University of Virginia. Deuartment of Computer Science, Thomton 
Hall, Charlottesville, VA 22903. 
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1. Introduction 

An important issue in parallel processing is the assignment of workload to processors. A common 

model of this problem is to assume that a program is composed of a number of communicating 

modules, and that each module is to be assigned to a processor in the target parallel system. The 
b 

assignment algorithm takes a global view of the system, and must consider processors’ capacity, any 

special affinity a module has for a processor (e.g. a module may q u i r e  assignment to a processor with 

a floating point accelerator), module execution requirements, inter-module communication, and any 

access to files and data structures that a module may require. An assignment algorithm may assign files 

to storage devices as well, so we will speak of the mapping of the computation, rather than the assign- 

ment of modules. One might also view this as a static scheduling of the computation’s components. 

We will assume that global communication is significantly more costly than local communication, as in 

a message passing architecture. 

Any reasonable mapping algorithm must take into account the expected behavior of the mapped 

computation, because the efficiency of a parallel computation depends heavily on how well its mapping 

both exploits available parallelism, and minimizes the communication and synchronization overhead. 

Both of these factors are determined by the underlying stochastic behavior of the computation. Loosely 

defining a phase to be a period during which a computation’s behavior exhibits some characteristic 

particular to the phase, we are interested in computations having multiple phases. Multiple phases may 

arise in a number of ways. Some algorithms explicitly have different phases and different behavior dur- 

ing each phase; a computation may also change its behavior in response to the behavior of partial 

results within the computation or in response to input that drives it. If during run-time a phase changes 

and causes a mismatch between mapping and behavior, performance will deteriorate. It may then be 

desirable to dynamically remap the computation. Because of the complicated considerations often 

involved in task and file assignment, it may not be feasible to allow processors to move modules, files, 
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and data structures around in a dynamic decentralized fashion. A global mapping (or remapping) algo- 

rithm is better able to consider all aspects of the assignment problem, especially if the parallel system 

is tightly coupled. In this paper we view dynamic remapping as the dynamic invocation of a static 

mapping or scheduling algorithm, as a function of the computation’s observed behavior. 

Parallel scientific computations typically divide workload by partitioning a grid-like data domain. 

Such computations are composed of numerical calculations at each point in a discretized spatial (or 

transformed) domain. Workload assignment involves partitioning the domain into regions which are 

then mapped to processors [2]. A processor is responsible for all  computations on grid points within 

regions assigned to it. Data partitioning is attractive because it can effectively exploit parallelism. Par- 

titions are relatively simple to compute, and static partitions are simple to manage at run-time. To 

dynamically remap a data partitioned computation, a new partition and mapping is centrally computed 

and reported to the processors who then exchange whatever data is necessary to effect the change. 

Remapping might be desirable if the number of domain points in a processor’s region changes, or if 

the calculations required at the domain points change. A good example of this phenomenon is the 

behavior of adaptive gridding techniques used in the solution of time-dependent partial differential 

equations [3]; grid points are adaptively added and subtracted from the domain in order to resolve 

interesting (and transient) features in the solution. While the solution is well behaved very few addi- 

tional grid points are required. Grid points are added in response to some phenomenon appearing 

(unpredictably) in the solution. Since the domain is originally partitioned by physical region, a large 

patch of additional grid points can be defined within one processor’s region, creating imbalanced work- 

load and poor performance. We will later illustrate this situation with a fluid dynamics code that 

employs dynamic regridding. Many other numerical techniques adaptively change the grid in response 

to solution behavior and may thus exhibit phase-like behavior, for examples see [l]. 

, 
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In both of the fore-mentioned types of computation, we can expect run-time behavior to change 

abruptly, and to the detriment of run-time performance. If the behavior of the computation is com- 

pletely understood and predictable, then the costs and benefits of remapping can be calculated and 

weighed against each other. When the phase changes, the action minimizing the computation's remain- 

ing execution time can be calculated simply, making the decision problem a nonissue. However, it is 

much more reasonable to assume that the computation's behavior is not completely understood, and 

that there is uncertainty in the length of the computation, the occumnce of the phase change, and in 

the benefits of remapping. This is likely to be the case if the computation is driven in real-time by 

external data. Dynamic remapping might still improve performance, but remapping raises a number of 

issues including (1) whether to use global remapping or decentralized and localized remapping, (2) 

determining when a phase change occurs, and whether remapping after the change will improve perfor- 

mance, (3) determining a new mapping and its implementation, (4) estimating the gains and costs of 

remapping, (5) determining the performance loss of not remapping after a phase change, and (6) 

optimally choosing when to remap. This paper treats only the latter issue, which must balance all 

costs, gains, and uncertainities involved in the decision to remap. We do illustrate solutions to the other 

issues for our model fluids problem; in general the other issues are problem and system dependent, and 

are important research issues in their own right. We focus on the remapping decision problem because 

it brings whatever solutions are found for a l l  of the other issues (aside from (1)) together in a cohesive 

bundle. 

Most of the literature related to remapping takes rather different views of the problem. "he work 

reported in [8], [ 111, and [29] essentially presumes that jobs arrive at a central dispatcher that assigns 

jobs to processors. This model of computation behavior does not fit our view of parallel computations. 

A more recent body of work including [IO], [la], [26], [27], [30] allows decentralized assignment 

decisions to be made dynamically. We feel that it is also important to investigate centralized assign- 

ment decisions, especially as technology is successfully driving down the cost of inter-processor 



-4-  

communication. Static and dynamic task assignment algorithms are presented in [2], [4], [7], [9], [12], 

[15], [13], [21], [28]. The dynamic assignment algorithms consider restricted classes of computations; 

the static assignment algorithms might be used in conjunction with a remapping decision policy if the 

statically assigned computations abruptly change behavior. A treatment of dynamic remapping of 

parallel computations whose behaviors change constantly and gradually is given in [20]; we focus here 

on behavior that changes radically, and abruptly. This paper is an extension of earlier treatments of this 

problem in [ 181; the major difference is this paper’s inclusion of multiprocessor results while the work 

in [18] studies simulations of this problem. Our approach is a variation on aspects of the broad mat- 

ment of change detection under uncertainty given in [22]. Our model modifies this analysis by using a 

different decision cost structure, and by assuming a random computation duration. 

This paper shows how to model the remapping decision problem formally as a Markov decision 

process. Under this model, we demonstrate that the decision policy minimizing the expected running 

time of the computation has a simple threshold structure: at every decision step in the computation we 

compute the gain probability that remapping immediately will improve performance, and compare that 

probability to a threshold pre-calculated specifically for that decision step. Remapping is chosen if the 

probability exceeds the threshold, otherwise the present mapping is retained. Recognizing that some 

parameters needed for the threshold calculation may not be known in practice, we investigate the per- 

formance of a decision heuristic that chooses remapping as soon as the gain probability exceeds some 

fixed threshold. This heuristic does not presume knowledge of the performance gain achievable by 

remapping. The heuristic was tested on an adaptive fluid dynamics code implemented on a multiproces- 

sor, and was found in most cases to give nearly optimal performance. Our results show that for these 

types of problems the key issue is not how much performance gain is possible by remapping, but 

whether any gain is possible. While the model is formulated to allow at most two phases, our results 

suggest that more complicated models are not necessary. So long as the phases do not occur more 

rapidly than remapping’s ability to amortize costs with gains, our model can be applied by always 
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considering “the next” phase change. 

The remainder of the paper is organized as follows. Section 2 describes an adaptive fluid dynam- 

ics code used to illustrate concepts employed by our analytic model; we also use it to report on 

dynamic remapping’s measured performance. Section 3 describes our analytic decision model, and 

identifies important functions related to the remapping problem. Section 4 discusses the optimal deci- 

sion policy, showing that it is a threshold policy. An optimal algorithm for approximating these thres- 

holds is discussed, and the behavior of the optimal thresholds is examined. Section 5 reports on the 

performance of an adaptive fluids code which employs dynamic remapping; this code is implemented 

on the F l e a 2  multiprocessor[l4]. Performance using dynamic remapping is shown to be substantially 

superior to the performance of static mapping. Section 6 presents our conclusions, and the Appendix 

treats analytic issues in detail. 

2. A Remapping Model Problem 

A one-dimensional fluid dynamics code seIves as a model problem. The code numerically simu- 

lates the density p(r,t) and velocity v(r,t) of a compressible fluid flowing through a tube, as a function 

of position r and time t. Our implementation employs the ETBFCI’ code [SI which solves the general 

continuity equation 

where C1, D 1 ,  D,, D3 are problem dependent constants or functions. For simplicity our experiments set 

all of these to zero. The one dimensional tube model is initially discretized with a grid having one 

point every h spatial units; we will call this the coarse grid. We assume that the value of p is known 

at every grid point at time t = 0, that the fluid flows from left to right, and that the density and velocity 

values of fluid entering the tube are given as needed. Presented with the density and velocity values 

of p throughout the domain at time to and the density of fluid entering the tube at time b+At, 
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ETBFCI' numerically integrates the continuity equation in t to solve for fluid behavior at time to + Ar. 

Variant computational behavior is caused by employing an adaptive gridding technique proposed 

in [3]. Every 5Af time units the solution behavior is examined, and additionalfine grid points with a 

spacing of h/6 are added in subregions where the examination predicts that truncation error will exceed 

a user defined limit (this mechanism is quite detailed and is beyond the scope of this paper). Every 

coarse grid point in such a region has a corresponding fine grid point at exactly the same tube position 

Similarly, fine grid points are removed from regions where they are no longer needed (coarse grid 

points are never removed). Figure 1 illustrates how patches of grid points might be applied to the 

domain. At time to, the computation first integrates only the coarse grid, from time to to time + At. 

Then, each fine grid is integrated 6 times where each integration uses a time step of Ad6; boundary 

values at the ends of subgrids are interpolated from the corresponding coarse grid values. After fully 

integrating the fine grids. function values at coarse grid points covered by !he grid points are replaced 

with the improved function values from the corresponding fine grid points. In its fullest generality, the 

method described in [3] allows a recursive attachment of h e r  grids to fine grids. For our purposes 

only two levels of grid points are necessary to cause load imbalance. 

Two factors dominate the execution time of a parallel implementation of our fluids code: com- 

munication cost and computation cost. Using ETBFCT the density at position ro at time to + At 

depends functionally on the density values for all grid points between ro - 5h and ro + 5h at time fO 

(approximately 50 floating point operations are used to update the density at a coarse grid point). This 

dependence requires inter-processor communication for points that are functionally dependent but 

reside on different processors. The domain decomposition and assignment illustrated in figure 2 

assigns an equal length of domain to every processor. If processor j is assigned a partition interval con- 

taining points [ro, . . . , ro + Mh],  then processor j must send points [ro, . . * ,rot4h] to processor 

j-1, and will receive points [ro-6h, . . , rO-h] from processor fi1. A similar exchange with the 
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Fig. 1 Regridding in One-Dimensional Domain 
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interval's right boundary points is undertaken with processor j+l. When the computation uses only a 

coarse grid, this standard assignment minimizes the volume of data that must be communicated 

between processors. Fine grid points tend to be placed in regions where the solution is changing shar- 

ply, and these regions tend to migrate from left to right as the computation progresses. The dynamic 

nature of fine grid creation and migration can pose severe load balancing problems if the standard 

assignment is used, again shown in figure 2. Figure 3 illustrates the concept of wrapping: more parti- 

tions than processors are defined and then the partition assignment "wraps" around all processors. Each 

partition again covers an equal length of the domain. Fine grid intervals have a larger chance of being 

spread across processors, and so a better load balance can be expected.' However, a wrapped assign- 

ment requires more inter-processor communication due to the increased number of partition interfaces. 

In fact, a wrapped assignment requires more computation because of a fixed additional computation 

cost associated with every partition regardless of size. Consequently, the standard assignment is pre- 

ferred when little or no dynamic regridding is occurring, while a wrapped assignment is preferred 

when dynamic regridding causes serious load balancing problems. 

Consider the situation where the tube initially has nearly constant density and velocity. As long 

as fluid entering the tube continues to have this density and velocity very little regridding will occur. 

Now imagine that the behavior of the inflowing fluid is determined by a real-time process that at some 

time begins to behave as a wave, and sometime later return to constant behavior. When a moving 

wave is in the tube, regridding may cause severe load imbalance. There is a short period between when 

the wave first enters the tube, and when it has propagated far enough into the tube to allow a wrapped 

assignment to be of some benefit. We say that the computation's phase changes at the end of this 

period rather than at the beginning. Consequently the computation's phase change lags behind the 

physical system's change at the tube's entry point. Another phase change occurs close to the time 

. 

A study of wrapped assignments is given in "Principles for Problem Aggregation and Assignment in 
Medium Scale Multiprocessors", D.M. Nicol and J.H. Salk, ICASE Report 87-39. 
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where the wave completely leaves the tube. Again we define the computation’s phase change in terms 

of when it is advantageous to remap back to the standard assignment. 

At the first phase change, switching from the standard mapping to a wrapped mapping may 

improve the load balance at the price of more communication. A number of issues have to be dealt 

with if dynamic remapping is to be successfully employed. First, a supervisory process must be able 

to determine whether performance is better under the standard mapping or under a wrapped mapping. 

This is accomplished at every regridding time, by requiring every processor to describe (or approxi- 

mate) to the supervisor its new spatial distribution of grid points. The supervisor then has a picture of 

workload distribution throughout the entire domain. The supervisor can use its knowledge of the 

number of operations done at a grid point to estimate computation costs under different mappings. It 

is important to note that a certain amount of estimation e m r  is unavoidable, and that the potential for a 

wrong estimate must be dealt with by a remapping policy. A second issue is how we view the remap 

ping problem. This paper considers only one option, that remapping is an activity that occurs infre- 

quently and in response to significant behavior change. Another option is to remap more frequently 

and tailor each new assignment to the computation’s behavior as observed at the time of remapping 

[20]. A third issue concerns the mechanics of changing from the standard assignment to a wrapped 

assignment. Because both the standard and wrapped assignments are defined in terns of fixed length 

domain intervals, it is straightforward for a processor to break up its single large interval into smaller 

intervals, and to calculate each small interval’s new processor location. All data associated with a 

small interval is communicated to the appropriate processor; consequently, remapping requires a sub- 

stantial volume of grid points and function values to be communicated. A fourth issue is the one 

addressed formally by this paper: the decision when and if to adopt a wrapped assignment. The key 

factors making the remapping decision a non-trivial problem are the uncertainty in the performance 

estimates under different mappings, the uncertainty in the fluid’s future behavior, and uncertainty in the 

time of termination (which may depend on solution behavior). The mathematical model developed in 
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the next Section deals formally with these factors. 

3. A Remapping Decision Model 

Our application of decision process theory requires that we identify a sequence of deckion steps 

in the computation. Every time a decision step is reached, a supervisory process decides whether or 

not to remap, based on the supervisory processes’ knowledge of the computation and behavior within 

different phases. Our model problem’s decision steps are the regridding times. Iterations in an itera- 

tive numerical program can serve as decision steps, and natural decision steps could be found in an 

embedded real-time system that periodically calls monitoring tasks. We define cycle i to be the period 

of computation between decision steps i and i+l .  The time required to execute a cycle, a cycle time, is 

assumed to be random with a known and finite mean. For the model problem this randomness 

describes uncertainty in cycle execution time, particularly as regridding and its effect on performance is 

not completely predictable. We do nut assume that cycle time distributions are independent. For 

simplicity’s sake we assume that at most one phase change will occur during the course of the compu- 

tation. Our empirical results show that carefully determined decision policies are not needed, suggest- 

ing that the additional complexity of mathematically treating more than one phase change is not 

worthwhile. 

In the model problem, the time required to execute a cycle depends both on the mapping in use, 

and the phase. Consequently we define four mean cycle times in the table below: 

Original second 
New first 
New second 

In the model problem e p  2 I?F reflects the additional communication cost of a wrapped assignment 

when load balancing is not needed; likewise eB 2 eR reflects the bad performance caused by load 
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imbalance under the standard assignment. 

Our decision model describes different types of uncertainty in the remapping problem. The uncer- 

tainty in termination time is captured by allowing the number of cycles in the computation, N, to be 

random. We assume that N is bounded from above by some constant M, and that N is independent of 

the occurrence of a phase change (the independence assumption can be relaxed, but it complicates the 

analysis). Another source of uncertainty arises as we cannot be sure when or if better performance is 

possible by remapping. In the model problem this is the uncertainty in when a wave may enter the tube 

and cause a phase change. This uncertainty is modeled by presuming that the occurrence of a phase 

change leading to potential remapping gain is random. For the sake of tractability we suppose that the 

index of the cycle during which the phase change occurs is geometrically distributed, with parameter Q. 

Q may be thought of as a phase change rate. Consequently, for every n, Q is the probability that the 

phase change happens at cycle n given that it has not happened before cycle n. Another source of 

uncertainty is related, but is perhaps more subtle. At a decision step we will employ some (problem 

dependent) mechanism to test for remapping gain. This mechanism might look for a decline in proces- 

sor utilizations, or it might be able to examine what code has recently been executed. For example, 

grid point distributions are used in the model problem to estimate costs under different mappings. 

Based on such examinations, the mechanism can give us some indication of whether a new mapping is 

called for, but we cannot be certain that the mechanism is absolutely reliable. It might prematurely 

report the possibility of gain, or it might fail to report an existing possibility of gain. In the model 

problem this type of uncertainty arises because only a simple model of program behavior is used to 

estimate costs; the simplicity intmduces some approximation error. This type of uncertainty is 

modeled by assuming that every invocation of the mechanism has a probability a of prematurely 

reporting possible gain, and a probability p of failing to report an existing possible gain. 
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At every decision step in the computation the decision policy decides whether or not to remap. 

The decision algorithm consults the gain testing mechanism described above, but is distinct from that 

mechanism. This is especially important because the gain testing mechanism can give a false report. 

Faced by high remapping costs and poor performance in the event of premature remapping, we do not 

want to remap simply because one consultation of the gain testing mechanism suggests remapping. 

Instead, we will compute a gain probubiliry that is calculated as a function of the response received 

from the gain testing mechanism. The gain probability calculated at step n is the probability that if we 

remap immediately, then the subsequent per cycle execution time would be smaller than if we do not 

remap. For the model problem this is the same as the probability that the phase has changed (since the 

phase change there is defined in terms of when remapping leads to performance gains). Formally, let 

X be the random variable describing the first decision step after which remapping leads to performance 

gain. We assume that remapping at step n when n 2 X leads to better performance, while remapping 

at n when n e X does not. The gain probability at step n is denoted p,,. and is simply 

pn = Prob(XI n ) .  

The probability po is taken to be zero. If the first gain test detects no possibility for gain, we have evi- 

dence that there is no immediate gain from remapping. But the probability of remapping gain can no 

longer be zero since it is possible for a phase change to have occurred during the first cycle, and it is 

possible for remapping gain to be achieved, and it is possible that the test mechanism failed to detect 

the potential gain. The true value of the gain probability in this case depends on the values of $ (the 

probability that the phase changes in the first cycle) and p (the probability that an existing phase 

change is not detected). Similar observations hold if potential gain is reported. Bayes’ Theorem [25] 

gives us a mechanism for calculating this probability. To use Bayes’ Theorem at the nfh step it is 

necessary to first compute an a priori probability p,(p), which is the pre-test probability that gain is 

possible at the nrh step, given that the probability of possible gain at the (n-1)sf step was p: 
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This expression adds the probability that gain is already possible at the (n-1)st step to the probability 

that it is not possible at step n-1 but will become possible precisely at step n. The gain testing 

mechanism's report at step n gives further information about the possibility of gain; Bayes' Theorem is 

used to combine that information with pa@). If A is an event space partitioned by events 

AI, A2, 

that the a posteriori conditional probability of Ai given that B is observed is 

. Ak, and if B is some observed event (not necessarily in A), then Bayes' Theorem states 

Prob(Ai)Prob{B I Ai) Prob(Ai IB) = 

(A,)P& ( B  I Ai) 
j=1 

Let A, be the event that gain is possible at step n, A, be the event that gain is not possible at step n, 

and let B represent the gain detection mechanism report. Prob(Al) prior to B's observation is pa@), 

and Prob(A2) = 1 -pa@);  1 - p is the probability that the mechanism reports gain given that gain is 

possible; and a is the probability that gain is reported given that gain is not possible. If a positive gain 

report is observed, we use the formulation described above to calculate pn 

Given a negative indication of potential gain, pn is similarly defined by p"@): 

We require one other related probability. Let qc@) be the probability that the gain detection mechanism 

reports potential gain at step n, given that pe l  = p .  By conditioning on whether gain is actually possi- 

ble by step n, it is not difficult to see that 

qC@) = Pa@)(l - PI + ( 1  - p,@)>a. (4) 

The probability of the mechanism reporting no gain at step n given pn-, = p  is simply 
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A decision to remap incurs two explicit costs. First, there is a delay cost of calculating the 

remapping, followed by the cost of implementing the new mapping. The first cost does not exist in the 

model problem, as the wrapped assignment is either computed prior to run-time, or at the time of the 

gain testing. We combine the two explicit remapping costs costs into a single remapping overhead cost 

D. We summarize our decision model definitions below. 

General decision processes define process states. At step n the state of our remapping decision 

process is the pair <pn,n>. At every decision step, the option chosen by a decision process incurs a 

cost whose value depends on the chosen option, and on the current process state. The goal is to find a 

decision policy that minimize the expected sum of costs incurred by the decisions. The costs incurred 

by our remapping decision process model the expected cycle time of the cycle following the decisiQp, 

and any remapping overhead costs. For example, if a phase change has occurred but the old mapping 

is retained, then eB is the expected cycle time of the next cycle. If remapping is chosen when gain is 

achievable, then an overhead cost of D is suffered, but then every remaining cycle has a mean 

Notation Definition 
n Decision Step Number 
N 
M Upper Bound on N 
Nn 

eF 
e, 
eP 
eR 
D 
a 
P 
$ 

pa@) 
p"@) 
p"@) 

4@) 

Random number of decision points 

N given N 2 n 

Pre-Gain Execution Time, Original Mapping 
Post-Gain Execution Time, Original Mapping 
Pre-Gain Execution Time, New Mapping 
Post-Gain Execution Time, New Mapping 
Delay to Calculate and Implement New Mapping 
Gain Test False Alarm Error 
Gain Test Missed Gain Error 
Phase Change Gain Rate 
A Priori Probability of Gain At Next Decision Step 
A Posteriori Probability of Gain After Positive Gain Observation 
A Posteriori Probability of Gain After Negative Gain Observation 

Probability of Not Observing Gain Next Observation 

f i n  E[Nnl 

I 4c_(p) Probability of Observing Gain Next Observation 

- i  

I 



-1 7- 

execution time of eR. The total computation execution time is the sum of all cycle times plus remap 

ping overhead; an optimal decision policy minimizes the expectation of this sum. We see that the 

optimal decision policy should depend somehow on the various costs and gains involved in the remap 

ping process, the remaining length of the computation, and the degree of our certainty that gain is pos- 

sible. One way to express the inter-relationships among all of these concerns is as a stochastic dynamic 

programming problem. Given gain probability p at step n, let V(<p,n>) denote the expected remaining 

execution time of the computation if we use the optimal decision policy. In the parlance of Markov 

decision processes [23], V(<p,n>) is the optimal (stationary) cost function. If we choose to retain the 

old mapping at step n, the next cycle's expected execution time is 

PeB + (l - P k F .  
Now let E,,(<p,n>) be the expected remaining execution time after step n+l, using the optimal decision 

policy, given gain probability p at step n and retention of the mapping at step n. Since Ev(<p,n>) 

describes optimal decision policy costs after step n+l, it is stated in terms of V(< ,n+l>). E,,(< ,n>) 

is a function expressing expected values, taken with respect to the probability of reporting potential 

gain at step n+l. Given pn = p ,  p H l  is equal to p"(p) if the mechanism at step n+l reports potential 

gain. this occurs with probability (F(p). Similar observations apply in the event that no change is 

observed. It follows that 

~,(<pm) = <@)v(<p"(p),n+l>) + q%)v(<p%),n+l>). (5)  

The expected execution time remaining after step n, achieved by keeping the old mapping now and 

thereafter using the optimal decision policy is consequently 

C,(<p,n>) = pes + (1 - p)eF + E,(<p.n>). 

We call C, the retain cost function. 

We similarly define C,,,(<p,n>), the remap cost function. C,,,(<p.n>) is the expected remaining 

execution time achieved by choosing to remap now. By choosing to remap, we immediately incur an 
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overhead cost D. If remapping gain is actually possible, every remaining cycle will have mean time 

eR; there are a mean number I?,, - n + 1 cycles remaining (reca that I?,, is the expected value of N 

given N 2 n). Letting X be the first step after which gain is possible, we see that the remap cost func- 

tion at <p,n> conditioned on X I n is 

C,(<p,n> I x I n)  = D + (fin - n + 1)eR. 

If remapping is chosen prematurely, we assume that this is determinable after suffering the cost D *, 

that the computation uses the old mapping for cycle n, and that the decision process is free to choose 

remapping at a later step. Knowing that remapping is premature affects the gain probability: it 

becomes zero. The remap cost function at <p,n> conditioned on X > n is thus 

C,,,(<p,n> I X > n) = D + eF + E,(cO,n>). 

Combining these expressions gives the unconditional remap cost function 

C,,,(<p,n>) = D + p(t?,, - n + 1)eR + (1 - p)(eF + E,(<O,n>)). (7) 
This formulation assumes that once remapping is chosen and gain is found, the decision process stops 

and no further remapping is considered. This is not realistic for a computation with more than two 

phases, but does allow a tractable treatment of the remapping decision problem. We will later argue 

that a more complicated multi-phase model is probably not necessary. Finally, we will find it con- 

venient to define C,(<p,n>) and C,,,(cp.n>) for n > N: C,(<p,n>) = 0 and C,,,(<p,n>) = D. It is clear that 

once the computation stops we want to "retain" and not ",map". 

The optimal decision from state <p,n> is given in terms of C,,,(<p,n>) and C,(<p,n>). The PinCi- 

ple of optimality states that 

and that the optimal decision at step n given p,, = p is the decision whose cost function minimizes the 

%ur results are not substantially affected if we do not assume this checking ability. The form of the 
remap cost function changes, but the single threshold decision policy is still derivable. The model fluids problem 
is actually better suited to the modified formulation. 



-19- 

8 

right hand side of the equation above. The following section shows that V(c - ,n>) has a useful smc- 

ture, and that the optimal decision from state 9,- is nicely characterized. 

4. Optimal Decision Policy Thresholds 

The gain probability is a key factor in our decision process. In this section we show that the 

optimal decision policy is a threshold policy: for every step n there is a threshold Z,,E [0,1] such that 

the optimal decision in state <p,m is to remap if p > z,,, and retain if p I z,,. We then show why 

exact calculation of the thresholds (IC,,) is computationally intractable, report on an optimal approxima- 

tion technique having bounded emr ,  and graphically illustrate the behavior of the { z,,) as a function of 

n. 

The following lemma provides the fundamental reasons for the optimal policy structure. Its proof 

is somewhat lengthy, and is given in the Appendix. 

LEMMA 1 : 
For all n, C,(<p,n>) is a linear function of p ;  
For all n, C,(<p,n>) is a piecewise linear concave function of p ;  
There exists [Op] such that for all n 2 5, C,(<p,n>) 5 C,,,(<p,n>) €or all PE [0,1]; 
If n < 5. C,(<l,n>) I C,(<l,n>). 

Consider the implications of Lemma 1. For any step n 1 5, the retain decision cost function is 

always less than the remap decision cost function, implying that we should retain regardless of the 

value of the gain probability. In this caset the optimal decision threshold is degenerate, p,, = 1. For 

n e no we know that the linear remapping cost function is less than the concave retain cost function at 

p = 1. It is therefore geometrically impossible for C,(<.,n>)*s functional curve to intersect C,(c.,n>)’s 

functional curve more than once, as illustrated by figure 4. If C,(<.,n>) and Cm(<.,n>) intersect at 

z,, < 1, then C,(<p,m) is less than C,(<p,n>) for p E [O,IF,], and C,(<p,n>) is less than C,(<p,n>) for 

p E [a,,,I]. It follows that the optimal decision from state <p,n> is to retain if p I z,, and to remap if 
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Fig. 4 Intersection of C,(<p,n>) and C,(cp,n>) 
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p > IC,. We summarize this result: 

THEOREM 1 : For every step n, there exists a IC, such that the optimal decision from cp,n> is to 
remap if and only if p > IC,. 

0 

If all of the decision model parameters are known, then in theory we can solve the equations 

describing V(<p,n>) and determine each optimal threshold. In practice there are significant obstacles to 

this procedure. Most importantly, we may not be able to quantify the model parameters. In addition, a 

computational problem arises from the fact that the optimal cost functions V(< - ,n>) are all piece-wise 

linear. If a piece-wise linear function changes its linear description at domain point d, we will call d a 

transition point. For any piece-wise linear function g on [0, 11, let S(g) be the set of g's transition 

points. In [17] we show that 

S(C,(c ,n-l> I Na)) = ( 4  1 0 I pc(q) = d or p'(q) = d for some d E S(V(c . ,n> I N=m)). 
This means that every transition point for V(< - ,n> I N=m) can give rise to two distinct transition 

points for C,(c ,n-l> I N=m). Any of these transition points greater than I C , ~  will not appear in 

S(V(<.  ,n-l> I N w ) ) ;  nevertheless, we see that the number of %ne segments defining V(< ,e) 

essentially doubles at every step of the recursive solution. Then in general, an exact solution is not 

computationally feasible. However, in [17] we describe an approximation procedure that estimates 

V(< ,n>) to any desired degree of accuracy. Furthermore, at every step this p m d u r e  is linear in the 

number of transition points, and over a broad class of approximations, it minimizes the number of tran- 

sition points required to achieve the desired accuracy. Our computational experience with this approxi- 

mation shows that it is quite efficient . With the scale of parameter values we used, generally fewer 

than 200 transition points in the approximation bounded the error in approximating V(< ,n>) for each 

n by 
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Figure 5 illustrates the behavior of the optimal thresholds for four different sets of parameter 

values. For computational simplicity, the number of cycles in the computation was assumed to be con- 

stant. The optimal thresholds tend to remain relatively constant, except for n nearest N. Note also that 

as the per cycle gain G = eB - f?R increases (for fixed D), the converged value of the optimal threshold 

decreases. This is completely intuitive, because the smaller the gain from remapping is, the more cer- 

tain we should be that gain is possible before choosing remapping and suffering the attendant over- 

head. Another tendency is that the region where n,, = 1 increases as D increases. It is also intuitively 

obvious that this should be true, because the expected overall remapping gain depends on the expected 

remaining length of the computation. If this is small, then a large remapping overhead may not be 

amortized, and it is better to simply suffer the "bad" cycle times eE until termination. While the 

behavior of the optimal thresholds is quite intuitive, it is also important to remember that N is random, 

and is not known prior to the computation. Optimal remapping requires the computation to rely upon 

the threshold's ability to balance costs and uncertainties. The optimal decision thresholds precisely 

account for termination time uncertainty in a way that the unaided computation cannot. 

5. Remapping the Model Problem on a Multiprocessor 

To illustrate the utility of dynamic remapping, the model fluids problem described in section 2 

was implemented on the Fled32 [14] multiprocessor at the NASA Langley Research Center. The Flex 

has 20 processors, each having about 1M bytes of local memory. All processors have bus access to a 

2M byte common memory. The model problem was written using a message passing paradigm; the 

Flex's common memory was used solely to implement message passing. In addition, the message- 

passing software was written to allow the simulation of longer message passing delays than would oth- 

erwise be suffered. Our experiments employed this feature to demonstrate that the heuristic need not 

precisely quantify costs in order to work well. 
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512 coarse grid points were used, spread across sixteen processors. Each computation consisted 

of 400 basic time-steps, leading to 80 decision steps. A computation tended to require a few minutes of 

wallclock running time (the best speedup for this problem size was only about 7; speedup improves by 

increasing the size of the grid, but increasing the size of the grid increases the wallclock running time, 

a scarce resource). Our experiments compared the performance of the heuristic remapping policy (with 

p = 0.7) with the performance of (1) a static standard assignment, (2) a static wrapped assignment with 

four partitions to each processor, and (3) an optimal policy created by solving for the (IC,,] using 

estimated problem parameters . Our experiments show that if the entry time of a wave is unknown, 

then our remapping heuristic strongly outperforms either static mapping. The heuristic and the optimal 

policy are seen to have nearly identical performance. These results were achieved under varyiqg simu- 

lated costs of communication. 

Our experiments use a coarse grid spacing of h = 0.25, and a basic time step of Ar = 0.925. The 

fluid velocity at a point is taken to be the fluid density at the point. The fluid density is initially con- 

stant at 5.0 throughout the tube. Entering wave densities are centered at 5.0, have amplitude 0.25, have 

period 8.0, and last for 1.6 units of time. 4 is taken to be 1/400, a and p a ~ e  both taken to be 0.1. 

The cycle time values required for the optimal policy calculation were estimated as s h w n  below 

by averaging measured cycle times within different phases. 

9.96 
7.4 
I .2 

There is a discrepancy between t.e behavior of the model problem  an^ the analytic model: cycle times 

The optimal policy here used a slightly different decision model. The modified model does not employ a 
checking mechanism after computing a new partition, so that a premature decision causes performance to suffer 
due to unnecessarily high communication costs. This latter decision model better reflects the behavior of the 
model problem. 



actually depend on whether the entire wave is in the tube. ..s more of a wave enters the tube, more 

regridding occurs in the wave region, and the cycle times rise. Consequently there is a transition period 

between the initial entry of the wave, and the time when the entire wave is present in the tube. The 

analytic model does not capture the transition period, and consequently the "optimal" decision policy 

thresholds we calculate are not truly optimal. The effects of this error are discernible, but not profound. 

Figure 6 plots the relative difference between d n g  times under constant threshold remapping, 

and the two static mapping policies discussed in section 2. Figure 6 plots data from runs which did 

not artificially delay communication, and from runs which did. The extra simulated communication 

costs added approximately three and one half milliseconds to the transmission time of every 32 word 

message packet. The vertical axis plots the relative difference (T,-TJITd, where T, is the running time 

under a static mapping, and Td is the running time under dynamic remapping. For example, a plotted 

value of 0.5 for some statically mapped problem means that the static mapping's running time is 50% 

worse than that of dynamic remapping for that same problem. The horizontal axis plots the fraction of 

the computation occumng before the wave enters the tube. This fraction has a strong impact on the 

running times of the static mappings. When the wave is present fer &most the entire ccmputation, 

then naturally the standard static mapping will suffer severely while the static wrapped assignment 

enjoys the benefits of load balancing. Similarly, if the wave does not enter the tube until near the 

computatioq's termination then the static standard mapping will enjoy low communication volume 

while the static wrapped assignment is forced to communicate much more boundary infomation. The 

critical observation is that chosing a static mapping when there is uncertainty in the wave's entry 

creates significant risk that the wrong static mapping is chosen. This same observation will hold if the 

computation undergoes more than one phase change: significant performance losses are suffered when- 

ever the mapping is mismatched with the computation's phase. It is clear that dynamic remapping 

effectively deals with these performance problems. It is also clear that while the additional communica- 

tion delay does affect performance, the heuristic still works well. This is important, because the gain 
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measurement mechanism did not employ estimates of communication costs. Similar results were noted 

with other choices of problem parameters, and other fluid behavior (e.g. an entering square wave). 

We did not plot the performance of the optimal policy because it is so close to the heuristic's. 

For al l  but the rightmost sample point the optimal policy was less than 0.1 percent faster than the 

heuristic (and never slower). In fact, the optimal thresholds (0.925) during the early part of the low- 

cost-communication computation were significantly higher than the fixed threshold (0.7) ; before decid- 

ing to remap the optimal policy generally required one more positive gain report than the heuristic pol- 

icy did. The heuristic did 3% better than "optimal" when the wave entered just at the end of the com- 

putation. This minor discrepancy arises because the analytic model over-estimates the benefit of 

remapping during the wave's entry transition period. The heuristic's near optimality supports the same 

observation made with the simulation study reported in [19]. 

The data presented in figure 6 indicates that precise quantification of remapping gain is not neces- 

sary. The gain testing mechanism was written so that communication costs were not considered, yet 

the heuristic worked nearly optimally for two different communication cost functions. The poor show- 

ing of the static wrapped assignment shows the severe effect that unnecessary communication has on 

performance, and yet the remapping policy provides substantial gains without any consideration at all  

of this cost. The fact that there is gain is enough to achieve that gain. The relatively low cost of 

remapping is a strong contributing factor to this good performance. We can expect the volume of 

remapping communication (and hence its cost) to be much larger for adaptive gridding in two and 

three dimensions. In this case intelligent remapping decision policies are even more important to ensure 

good performance. 

The statistical updating of p n  plays an important role in the heuristic's good performance. Our 

experience with the code shows that false alarms from the gain testing mechanism occur often enough 

to make them a potential problem. If we were to remap whenever the gain mechanism indicated gain 
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was possible we would often be premature. The Bayesian updating of pn combined with a reasonably 

high decision threshold provides good protection against premature remapping. 

Another important factor in the heuristic’s good performance is the fact that the length of time 

between a phase change and program termination was generally long enough to amortize the cost of 

remapping. The heuristic should work equally well on computations with more than one phase, pro- 

vided that the average time between phase changes is long enough and the remapping gain large 

enough to amortize the cost of remapping between phases. 

The data reported here is obviously not an exhaustive performance study of dynamic remapping, 

although extensive testing of a simulation model[19] supports the conclusions suggested by our fluids 

code data, and supports our contention that the two-phase model presented here is adequate for compu- 

tations with more phases. Our current research includes more extensive testing of different types of 

remapping on different problems and different architectures. Rather, the data we present should be 

taken as an existence proof of the utility of dynamic remapping. Much more work is needed before 

the user of a general parallel code can intelligently determine whether his code benefits from remap 

ping, and what form that remapping should take. 

6. Conclusions 

An effective mapping of workload to processors in a parallel processing system must make cer- 

tain assumptions about the computation’s running behavior. The behavior of many computations is 

characterized as a sequence of phases, where behavior within a phase is fairly stable, but the behavior 

between two phases can be quite different. It is therefore possible for a mapping to become ineffective 

when a phase change occurs, so that dynamically remapping the computation may be required to main- 

tain good performance. The decision to remap must take into account the performance gains and costs 

involved, and must deal with uncertainty in remapping gains, the computation’s future behavior, and 

the computation’s termination time. We have modeled this decision problem with a Markov decision 
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process, and determined the structure of the optimal decision policy. However, calculation of this pol- 

icy requires estimation of parameters that may not be known a priori. We therefore studied the perfor- 

mance of a simple threshold heuristic that does not assume knowledge of remapping’s costs and gains. 

A study of this heuristic on a multiprocessor fluids code shows that this heuristic works remarkablely 

well, and shows that the remapping decision problem does not require precise estimates of these 

parameters. The key issue for the remapping decision problem is thus seen to be the relatively accurate 

assessment of when remapping leads to performance gains. 

There are certainly limitations to the approach we’ve taken here. To use our policy it is neces- 

sary to have enough fore-knowledge of the computation to be able to write code that dynamically 

analyzes behavior and looks for remapping gain. It was straightforward to analyze the model fluids 

problem, but even there we needed to know how much work was associated with every grid point, and 

that the work at every point was essentially identical. We anticipate that looking for remapping gain is 

a non-trivial problem with more complicated non-numerical codes. Until a method is developed to 

automatically test for remapping gain for a general problem, our approach is not a good candidate for 

an automatic load balancing policy at the operating system level. Nevertheless, there will always be 

codes that people agonize over in order to get the best possible performance; when those codes have 

unpredictable phase-like behavior our approach can significantly improve performance. 
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Appendix 

In this appendix we prove Lemma 1 from section 3, and discuss an algorithm for approximating 

V(c - ,n>). We first prove Lemma 1. 

Proof of Lemma I 

Some of our analysis conditions on the value of N. We use the notation g(<p,n>W=m) to denote 

the value of function g at state <p,n> given that N = m. We will also say that a function g is plcc if it 

is piece-wise linear, continuous, and concave. 

Lemma 1’s first claim is that for every n, C,(<p,n>) is a linear function of p .  This is easily seen 

from its definition in equation (6). Lemma 1’s second claim is that for every n, C,(<p,n>) is a plcc 

function of p .  This result follows primarily from the following lemma reported in [22] and stated in 

terms of our notation: 

LEMMA A-1 : Suppose that N = m .  If V(<p,n+l>lN=m) is a plcc function of p ,  then 
E,,(<p,n>W=m) is a plcc function of p .  
0 

Lemma 1’s second claim is established by showing that for every fixed n 2 0, V(<p,n>) and C,(<p,n>) 

are plcc functions of p .  First condition on N = m  for some m. Recalling that we have defined 

C,(<p,n>) =.O and C,,,(<p,n>) = D for n >m, it is clear that V(<p,n>) = C,(<p,n>) = 0 for n > m. For 

n I m we will show inductively that V(<p,n>W=m) and C,(<p,n>W=m) are plcc functions of p .  For 

the base case let n = m. For any p E [0,1], 

C,(Cp,m>W=??l) = PeB + (1 - p)eF + Ev(<pJ?DW=m) 

= pes + (1 - p)eF 
since V(<p,m+l>lN=m) = 0 for all p .  We also observe that C,(<pp~W=m) is plcc since it is linear. 

The class of plcc functions is closed under the point-wise minimum operation; V(<p,mlN=m) must 

also be plcc, establishing the induction base. 
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For the induction hypothesis we suppose that both C,(cp,n+l>W=m) and V(cp,n+l>lNm) are 

plcc functions of p for some n 5 m - 1. Lemma A-1, and the closure of plcc functions under addition 

and point-wise minimum again ensure that C,(<p,n>) and V(cp,n>) are p k c  functions of p ,  completing 

the induction. 

To complete the proof, we note that the class of plcc functions is also closed under scalar multi- 

plication, and observe that 

and 

To help establish Lemma 1’s third and fourth claims, we analyze the values of C,,,(<p,n>) and 

C,(cp,n>) at p = 1. Key results are given by Lemma A-2. 

LEMMA A-2 : Either 

(i) V(e1.m) = C,,,(cl,n>) for all n for which Prob(N = n)&; or 

(ii) V(cl,n>) = C,(cl,n>) for all n for which Prob(N = n)&; or 

(iii) There exists an 4 (possibly -) such that for all n c 4, V(cl ,n>) = C,(cl,n>), and for all n 2 no 

for which Prob(N = n)&, V(cl,n>) = C,(<l,n>). 

PROOF: We condition on N = m, for any 0 Im 5 M. Let K be the largest integer such that 

(eB - eR).K I D. Simple algebra (omitted here) establishes the inductive proof that for all n such that 

m - K  c n I m. 

V(cl,n>W=m) = C,(<l,n>W=m) = (m - n + I)eB; 

and that for 0 5 n I m - K ,  

V(<l,n>W=m) = C,,,(<l,n>lN=m) = D + (m - n + l)eR 
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and 

C,(<l,n>lN=m) = es + D + (m - tt)f?R. 

Defme d(nlN=m) to be the conditional difference C,,,(<l,n>W=m) - C,(<l,n>W=m), and d(n) to be the 

unconditional difference C,,,(<l,n>) - C,(<l,n>). From the equations above, we see that 

for n > m 
d(nlN=m) = D - (ee - e&(m - n + 1) form - K e n S m. 

(eR - ee) for n I rn - K I" 
It follows from the definition of K that d(nlN=m) is an increasing function of n. From this we infer that 

d(n) increases in n, since 

d(n+l) - d(n) = Prob(N = m )  (d(n+lW=m) - d(nlN=m)J 2 0. 
W l  

This relation shows that C,,,(<l,n>) - C,(<l,n>) is increasing in n. Then case (i) occurs if d(n) is 

negative for all n, case (ii) occurs if d(n) is positive for all n, and case (iii) occurs if d(n) changes sign 

at n = 4. 

To establish Lemma 1's third claim we will show that C,(<p,n>) is linear in p whenever n 2 4. 

Since C,(<.,n>) is always linear, and C,(<O,n>) 5 C,,,(<o,n>) for all n, and C,(<l,n>) I Cm(<ltn>) 

when n 2 it follows directly that C, and C,,, cannot intersect, so that C,(<p,n>) 5 Cm(<p,n>) for all 

p E [O, 11. 

LEMMA A-3 : If n 2 no, then C,(<p,n>) is linear in p ,  and V(<p,n>) = C,(<p,n>) for all p E [O,lI. 

PROOF: We proceed by induction. M is the largest integer such that Prob(N = M )  # 0, so that 

V(<pM+l>) = 0 for all p and 
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v(<p,~>) =  rob(^ = M J C ~ < ~ , M > )  =  rob(^ = M) [eB + (1 - p)eF] 

which is linear inp. The induction base is thus satisfied. 

For the induction hypothesis, we suppose there is an n > such that V(<p,n+l>) = C,(<p,n+l>) for all 

p E [0,1], and that C,(<p,n+l>) is linear in p. We know that 

V(<p,n+l>) = A*p + B 

and that Pa(P)(l - PI 
#(PI 

for some A and B. Equations (2), (3), and (4) show that that pc(p) = 

; it follows that Pa@@ P"@> = - 
47P) 

cf(<p,m) = PeB + (1 - p)eF + Apa(p) + B 
which is linear in p since p,(p) is linear in p. Since C,,,(<p,n>) and C,(<p,n>) cannot intersect it fol- 

ing the induction. 
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